1(a). A straight line has equation y = 5x + 11.

Write down the gradient of the line.

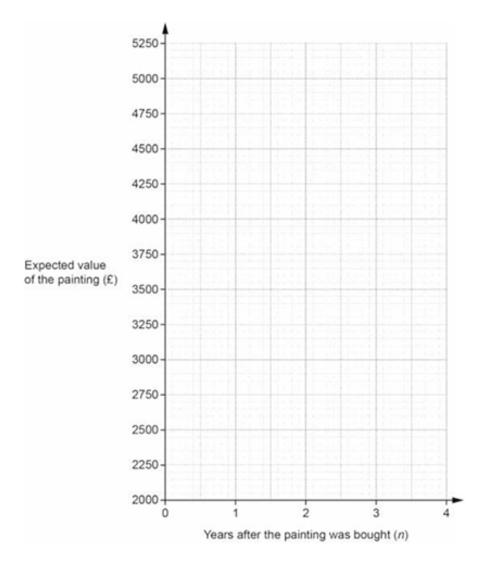
[1]	
 г.л	

(b). Alex says the graph of y = 5x + 11 passes through the point (3, 23).

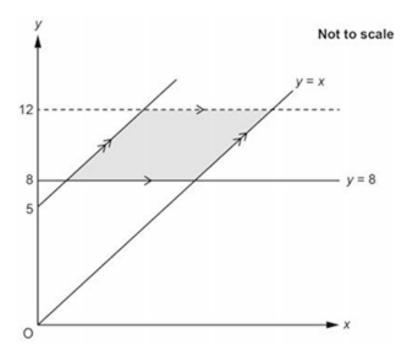
Is Alex correct? Show how you decide.

because	
	[2]

2. The expected value of a painting, £*P*, is given by the formula


 $P = 3000 \times 1.15^n$

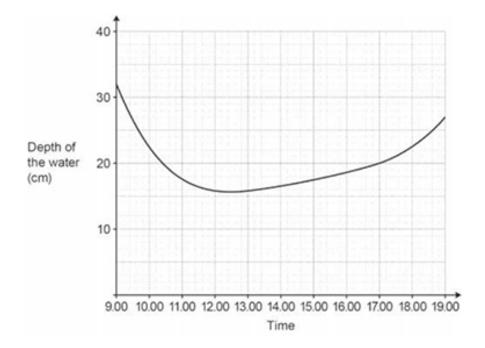
where n is the number of years after it was bought and $0 \le n \le 4$.


The table shows the expected value of the painting n years after it was bought.

Years after the painting is bought (<i>n</i>)	1	2	3	4
Expected value of the painting, rounded to the nearest £	3450	3968	4563	5247

Draw a suitable graph to show the expected value of the painting n years after it was bought, where $0 \le n \le 4$.

3(a). In the diagram below, the shaded region is a parallelogram. The parallelogram can be identified by four inequalities. Two of the inequalities are $y \ge 8$ and $y \ge x$.


Write down the other **two** inequalities that identify the parallelogram.

.....[3]

(b). Work out the area of the parallelogram. You must show your working.

...... square units [4]

4(a). This graph shows the depth of the water, in centimetres, at a particular point in a river over a period of 10 hours

Work out the average rate of change in the depth of the water between 9.00 and 17.00.

..... cm per hour [2]

(b). Use the graph to estimate the rate of change in the depth of the water at 13.00. You must show working to support your estimate.

..... cm per hour [4]

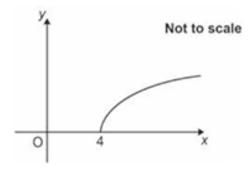
5(a). For each graph below, select its possible equation from this list.

$$y = \sqrt{x-4}$$

$$y = 4$$

$$v = x^4$$

$$y = \frac{4}{x}$$

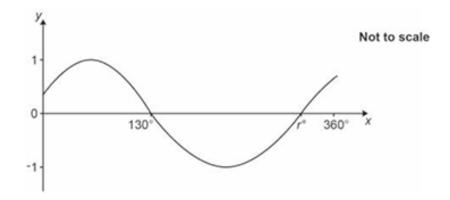

$$y = \left(\frac{1}{4}\right)^x$$

$$y = -4x^2$$

$$y = 4 \cos x$$


$$y = \sqrt{4^2 - x^2}$$

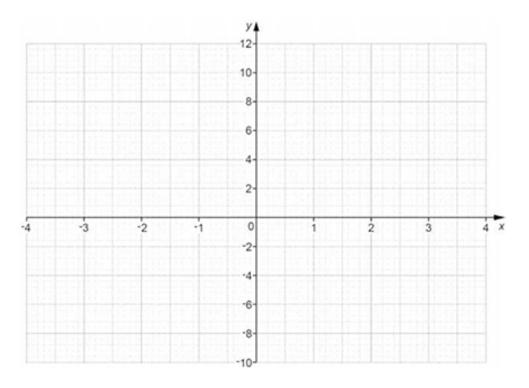
i.


.....[1]

ii.

.....[1]

(b). A graph is drawn on the axes below.


The equation of the graph is $y = \cos(x - p)$, where $0^{\circ} \le x \le 360^{\circ}$. The *x*-intercepts are 130° and r° .

Write down the value of p and the value of r.

6(a). Here is a table of values for $y = x^2 - x - 6$.

Х	-3	-2	-1	0	1	2	3
У	6	0	-4	-6	-6	-4	0

Draw the graph of $y = x^2 - x - 6$ for $-3 \le x \le 3$.

[3]

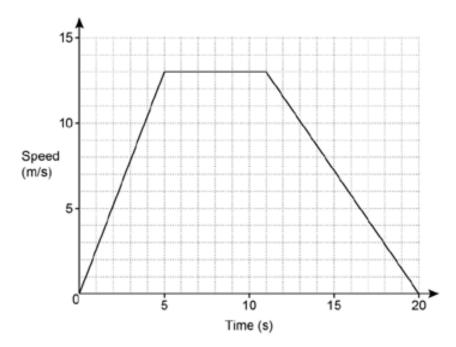
(b). Write down the equation of the line of symmetry of the graph.

.....[1]

(c). Use the graph to solve the equation $x^2 - x - 6 = 0$.

7.

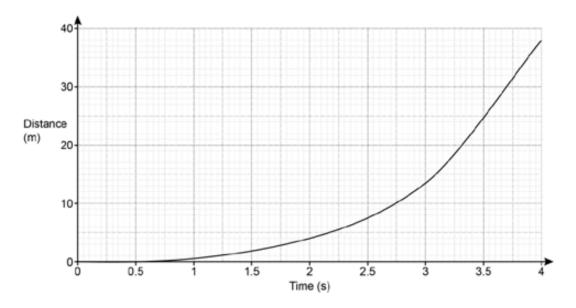
i. Write down the coordinates of the turning point of the graph $y = (x - 2)^2 + 7$.


(.....) **[2]**

ii. Describe the **single** transformation which maps the graph of $y = x^2$ onto the graph of $y = (x - 2)^2 + 7$.

.....[2]

8(a).


The graph shows the speed of an object during the first 20 seconds of its motion.

Calculate the distance travelled by the object during the 20 seconds.

r	า [3]

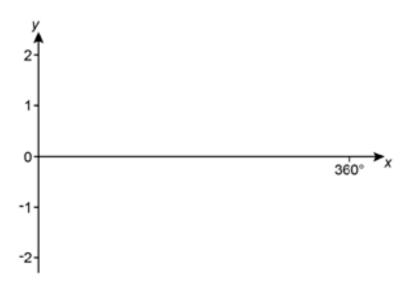
(b). The graph shows the distance travelled by an object during the first 4 seconds of its motion.

i. Work out the average speed of this object between 2 and 4 seconds.

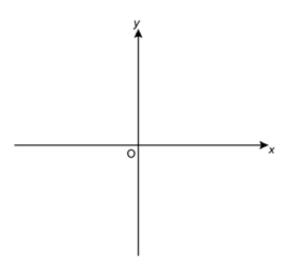
...... m/s **[2]**

ii. Use the graph to estimate the speed of this object at 3 seconds. You must show working to support your estimate.

..... m/s **[3]**


[2]

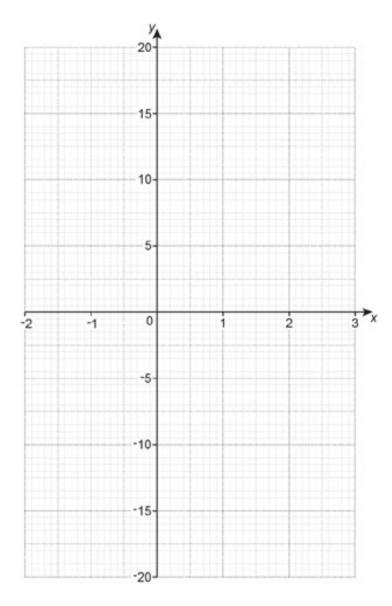
iii. What happens to the speed of this object during these 4 seconds of motion. Explain how you know.


The speed		
I know this because		
	[1]	1

9(a).

Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. Indicate any values where the graph crosses the *x*-axis.

(b). Sketch the graph of $y = 5^x$. Indicate any values where the graph crosses the axes.

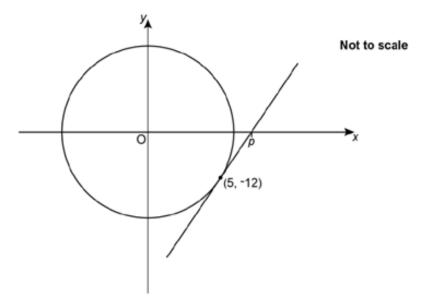

10(a).

Complete this table for $y = x^3 - 2x^2$.

Х	-2	-1	0	1	2	3
У	-16		0	-1	0	

[2]

(b). Draw the graph of $y = x^3 - 2x^2$ for values of x from -2 to 3.



[3]

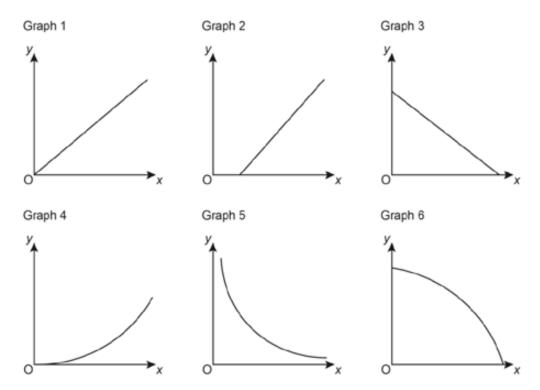
(c). Use the graph to solve the equation $x^3 - 2x^2 = 3$. Give your answer to 1 decimal place.

.....[1]

11. The diagram shows a circle with centre (0, 0) and a tangent at (5, -12). The tangent at (5, -12) crosses the *x*-axis at (p, 0).

Find the exact value of *p*. You must show your working.

12. The region **R** is shown on this grid.



The region ${\bf R}$ is defined by three inequalities. The first inequality is given below.

Complete the second inequality and write down the third inequality needed to define region **R**.

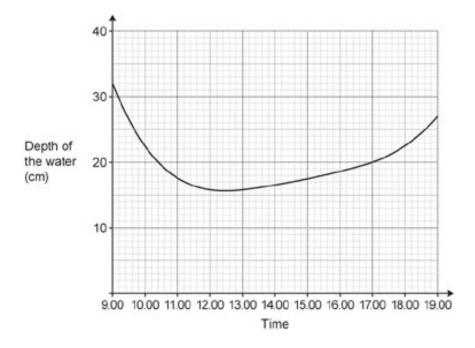
$$y \ge 0$$

13. Below are six graphs, numbered 1 to 6, that show different relationships between *x* and *y*.

For each description below, write down the number of the graph that best represents the relationship between x and y.

- x: temperature in °F
- y: temperature in °C, where $y = \frac{5}{9}(x-32)$

Graph


- x: time taken to run 100 m
- y: average speed when running 100 m

Graph

- x: radius of a solid sphere made from clay
- y: mass of the same solid sphere.

Graph

14(a). This graph shows the depth of the water, in centimetres, at a particular point in a river over a period of 10 hours.

Work out the average rate of change in the depth of the water over the 10 hours.

..... cm per hour [4]

(b). Use the graph to estimate the rate of change in the depth of the water at 17.00. You must show working to support your estimate.

...... cm per hour [4]

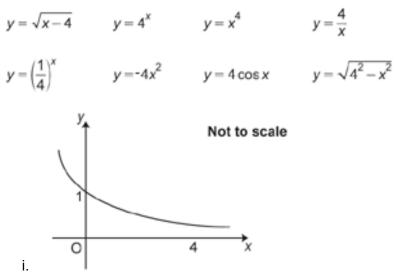
15(a). For each graph below, select its possible equation from this list.

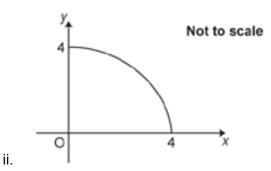
$$y = \sqrt{x-4}$$

$$v = 4^{2}$$

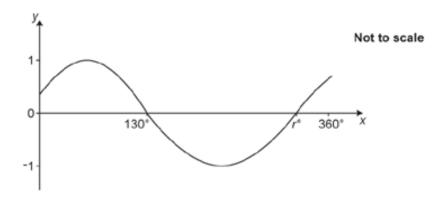
$$v = x^4$$

$$y = \frac{4}{x}$$


$$y = \left(\frac{1}{4}\right)$$


i.

$$y = -4x^2$$


$$y = 4\cos x$$

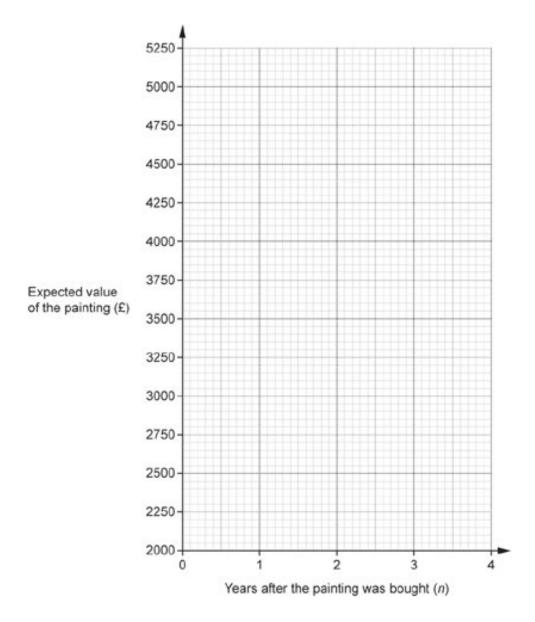
$$y = \sqrt{4^2 - x^2}$$

(b). A graph is drawn on the axes below.

The equation of the graph is $y = \sin(x + p)$, where $0^{\circ} \le x \le 360^{\circ}$. The *x*-intercepts are 130° and r° .

Write down the value of p and the value of r.

16. The expected value of a painting, £*P*, is given by the formula

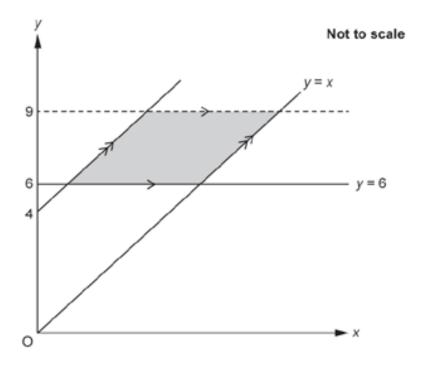

$$P = 2500 \times 1.2^{n}$$

where *n* is the number of years after it was bought and $0 \le n \le 4$.

The table shows the expected value of the painting n years after it was bought.

Years after the painting is bought (n)	1	2	3	4
Expected value of the painting (£)	3000	3600	4320	5184

Draw a suitable graph to show the expected value of the painting n years after it was bought, where $0 \le n \le 4$.

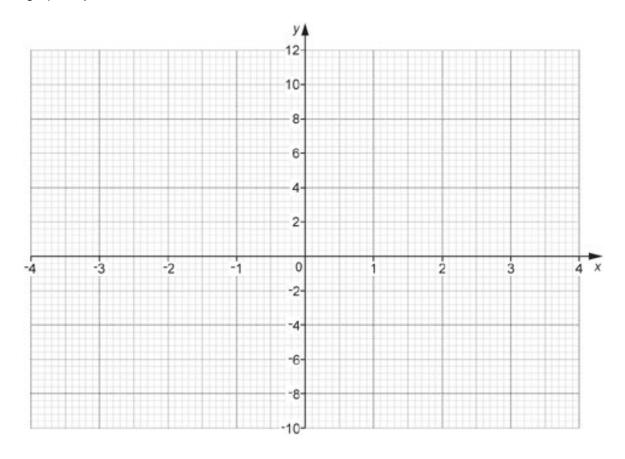


[2]

17(a). In the diagram below, the shaded region is a parallelogram. The parallelogram can be identified by four inequalities.

Two of the inequalities are $y \ge 6$ and $y \ge x$.

because


Write down the other **two** inequalities that identify the parallelogram.

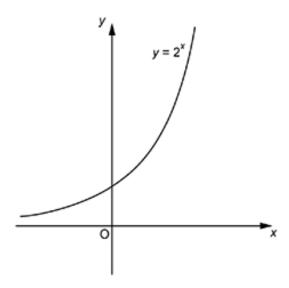
	[3]
(b). Work out the area of the parallelogram. You must show your working.	
	square units [4]
18(a). A straight line has equation $y = 4x + 9$.	
Write down the gradient of the line.	
	[1]
(b). Casey says the graph of $y = 4x + 9$ passes through	the point (3, 23).
Is Casey correct?	

19(a). Here is a table of values for $y = x^2 - x - 8$.

Х	-4	-3	-2	-1	0	1	2	3	4
У	12	4	-2	-6	-8	-8	-6	-2	4

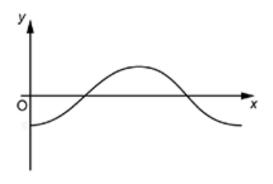
Draw the graph of $y = x^2 - x - 8$ for $-4 \le x \le 4$.

(b). Write down the equation of the line of symmetry of the graph.


.....[1]

[3]

(c). Use the graph to solve the equation $x^2 - x - 8 = 0$. Give your answers to 1 decimal place.

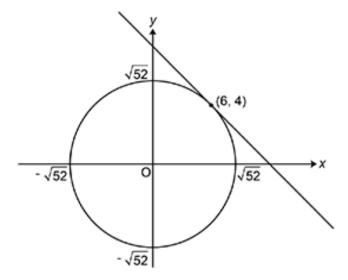

[3]

20(a). The graph of $y = 2^x$ is sketched below.

On the same axes, sketch the graph of $y = 3^x$.

(b). Sasha sketches this graph.

Sasha says


The equation of my graph is y = cosx.

i. Explain how you know that Sasha is **not** correct.

ii. Write down a possible equation for Sasha's graph.

.....[1]

21(a). The diagram shows a circle, centre the origin, with the tangent to the circle at the point (6, 4).

Write down the equation of the circle.

.....[2]

(b).

i. Show that the tangent to the circle at the point (6, 4) has gradient $\frac{-3}{2}$.

[2]

ii. Find the equation of the tangent to the circle at the point (6, 4).

.....[2]

22(a). Here are sketches of six graphs, labelled A to F.

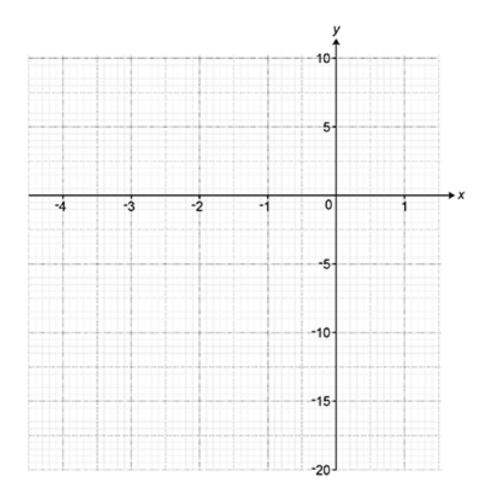
Write the letter of the graph that represents the following relationships.

y is inversely proportional to x.

.....[1]

(b). y is directly proportional to x^2 .

.....[1]

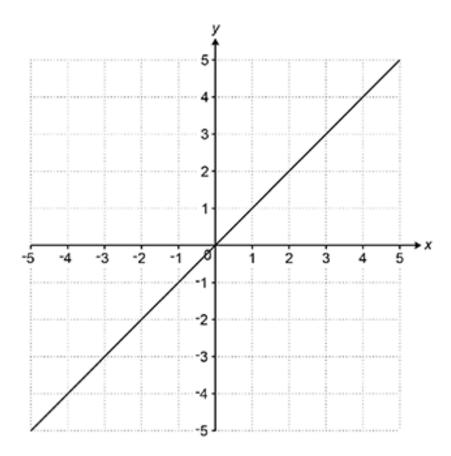

23. Write down an equation for the line that is parallel to y = 2x - 3 and passes through the point (0, 4).

.....[2]

24(a). Complete the table for $y = x^3 + 3x^2$.

x	-4	-3.5	-3	-2.5	-2	-1	0	1
У	-16	°6.1	0	3.1	4		0	4

(b). Draw the graph of $y = x^3 + 3x^2$ for $-4 \le x \le 1$.

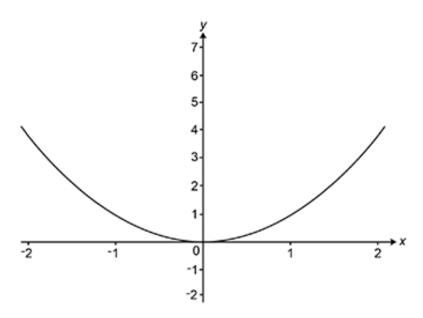


[3]

(c). The equation $x^3 + 3x^2 = k$ where k is an integer, has exactly one solution for $-4 \le x \le 1$.

Find the greatest possible value of k.

25. The graph of y = x is drawn on the grid.

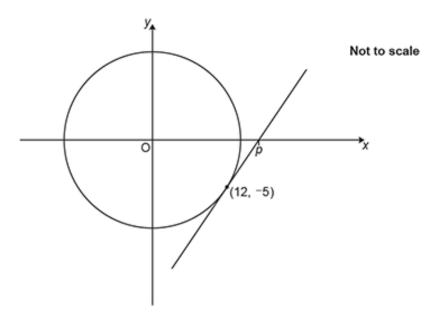


The region ${\bf R}$ satisfies the following inequalities.

$$y \le x$$
 $y \ge -3$ $y < -3x + 4$

By drawing two more straight lines on the grid, find and label the region **R**.

26(a). The graph of $y = x^2$ is shown below for $-2 \le x \le 2$.

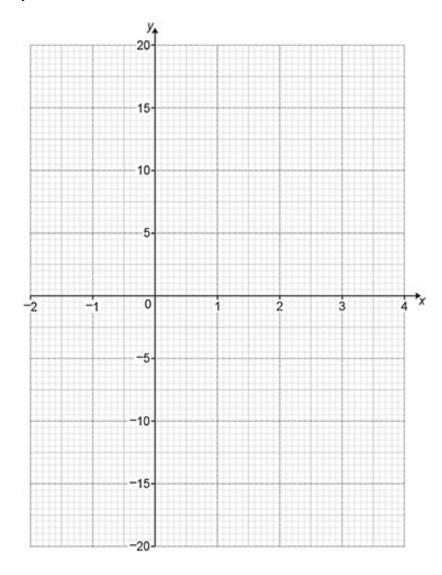

Find the equation of the image when $y = x^2$ is reflected in the line y = 3.

.....[2]

(b). Describe the **single** transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 4x - 7$.

[4]

27. The diagram shows a circle with centre (0, 0) and a tangent at (12, -5). The tangent at (12, -5) crosses the *x*-axis at (p, 0).


Find the exact value of *p*. You must show your working.

28(a). Complete this table for $y = x^3 - 3x^2$

x	-2	-1	0	1	2	3	4
у	-20		0	-2	-4		16

[2]

(b). Draw the graph of $y = x^3 - 3x^2$ for values of x from $^-2$ to 4.

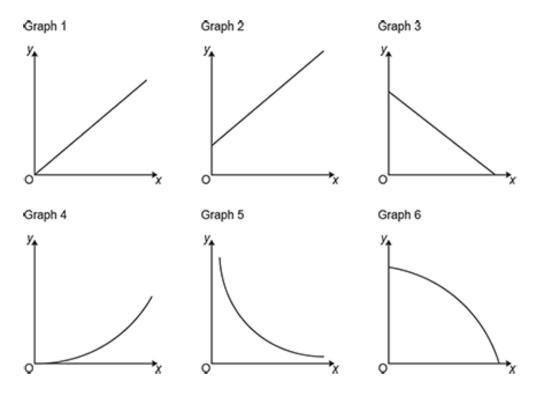
[3]

(c). Use the graph to solve the equation $x^3 - 3x^2 = 5$. Give your answer to **1** decimal place.

.....[1]

29. The region R is shown on this grid.

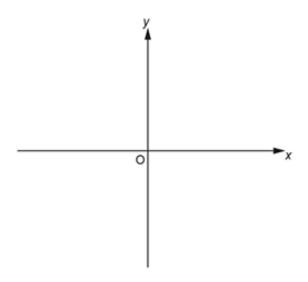
The region ${\bf R}$ is defined by three inequalities.


The first inequality is given below.

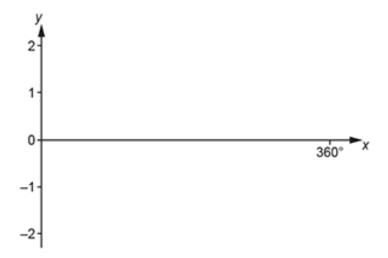
Complete the second inequality and write down the third inequality needed to define region **R**.

$$2y$$
 $3x + 6$

.....


30. Below are six graphs, numbered 1 to 6, that show different relationships between *x* and *y*.

For each description below, write down the number of the graph that best represents the relationship between x and y.


- x: temperature in °C
- *y*: temperature in °F, where y = 1.8x + 32.
- x: average speed when running 200 m
- y: time taken to run 200 m.
- x: mass of a solid object made from clay
- *y*: volume of the same solid object.

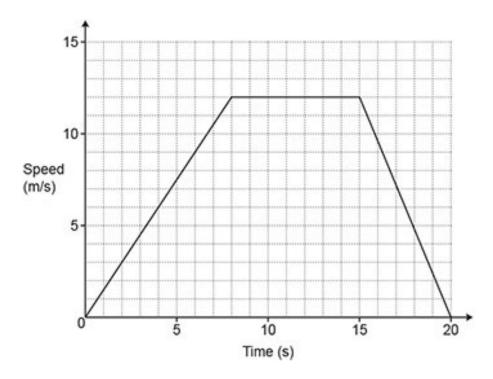
31(a). Sketch the graph of $y = 8^x$. Indicate any values where the graph crosses the axes.

[2]

(b). Sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$. Indicate any values where the graph crosses the *x*-axis.

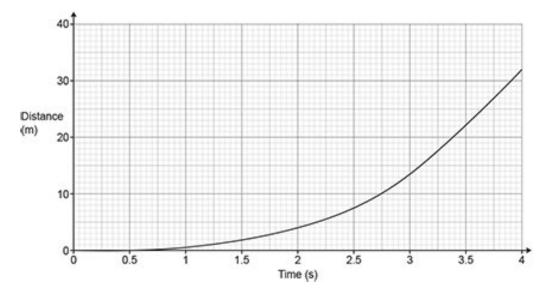
[2]

32.


i. Write down the coordinates of the turning point of the graph $y = (x - 3)^2 + 8$.

(.....) [2]

ii. Describe the **single** transformation which maps the graph of $y = x^2$ onto the graph of $y = (x - 3)^2 + 8$.


.....[2]

33(a). The graph shows the speed of an object during the first 20 seconds of its motion.

Calculate the distance travelled by the object during the 20 seconds.

(b). The graph shows the distance travelled by an object during the first 4 seconds of its motion.

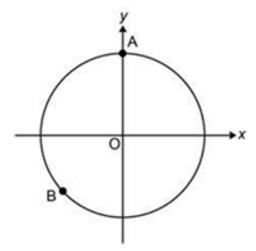
i. Work out the average speed of this object between 2 and 4 seconds.

m	/s	[2	
---	----	----	--

ii. Use the graph to estimate the speed of this object at 3 seconds. You must show working to support your estimate.

 m/s [3]

iii. What happens to the speed of this object during these 4 seconds of motion. Explain how you know.


The speed

I know this because

[1]

34(a). A circle has equation $x^2 + y^2 = 100$.

The sketch shows the circle and two points, A and B, which lie on the circumference of the circle.

Write down the coordinates of point A.

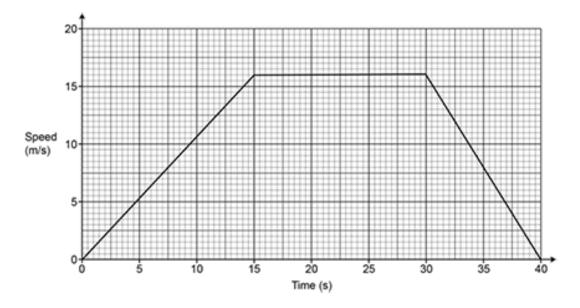
(.....) [1]

(b). Point B has x-coordinate -7.

Find the exact value of the *y*-coordinate of point B.

.....[3]

(c). Another point, C, lies on the circle and has an x-coordinate that is three times its y-coordinate.

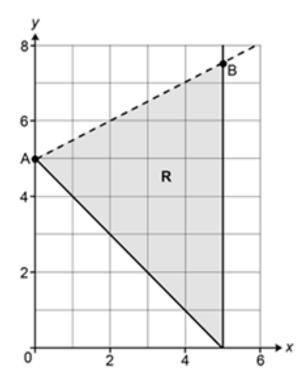

Find the two possible pairs of coordinates for point C.

Give your answers in exact form.

You must show your working.

(....., and (.....) [5]

35(a). The graph shows the speed of a car during the first 40 seconds of a journey.


Write down the acceleration of the car between 15 seconds and 30 seconds.

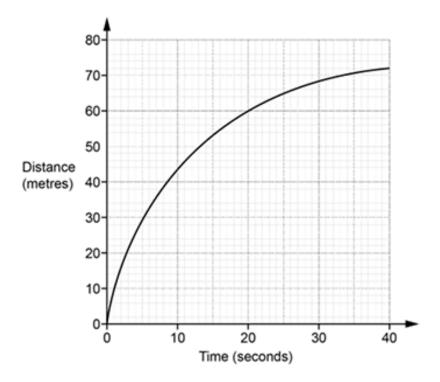
.....m/s² [1]

(b). Work out the average speed of the car, in m/s, during the 40 seconds. You must show your working.

..... m/s **[5]**

36(a). The region \mathbf{R} is shown on this grid. A is the point (0, 5) and B is the point (5, 7.5).

Show that an equation of the straight line through A and B is 2y = x + 10.

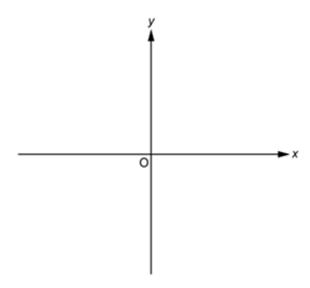

(b). Write down the three inequalities that define region **R**.

.....[5]

[3]

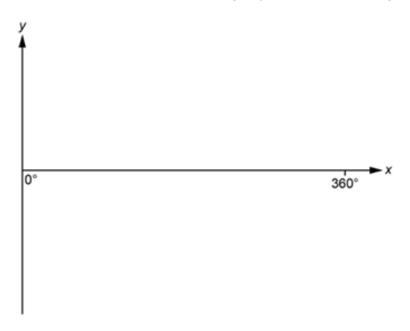
[1]

37(a). The graph shows the distance travelled by a particle over the first 40 seconds of its motion.



Show that the average speed of the particle over the first 40 seconds of its motion is 1.8 m/s.

(b). Estimate the speed of the particle at 20 seconds. You must show working to support your estimate.


..... m/s **[3]**

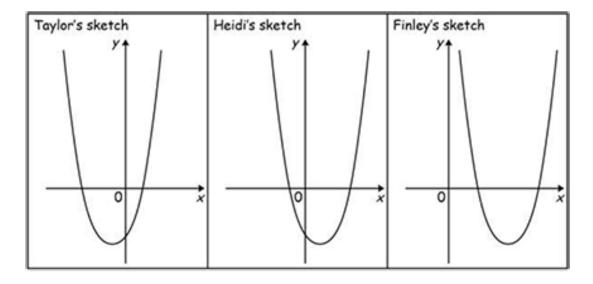
38(a). Sketch the graph of $y = 3^{-x}$ indicating any values where the graph crosses the axes.

[2]

(b). Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$ indicating any values where the graph crosses the axes.

.....[3]

39. Find the equation of the line through (-4, 5) that is perpendicular to $y = \frac{1}{2}x + 3$.

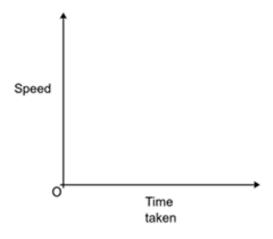

40. Describe the **single** transformation that maps the graph of $y = x^2$ onto the graph of $y = (x - 2)^2 + 1$.

[3]

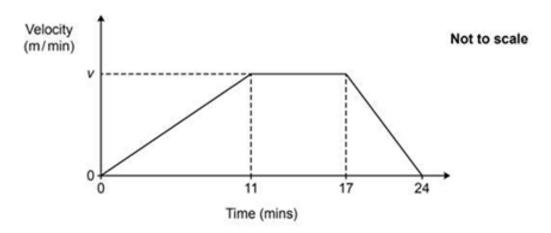
41. Describe fully the graph of $x^2 + y^2 = 10$.

41. Describe fully the graph of x + y = 10.

42. Taylor, Heidi and Finley all attempt to sketch the graph of y = (2x + 5)(x - 4).

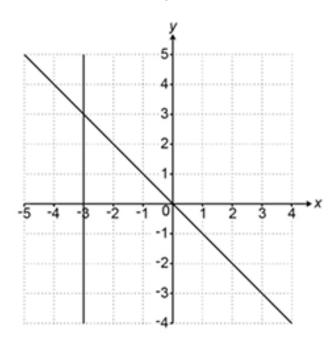

Whose sketch is the most accurate?

Write down the properties of the graph that you used in making your decision.


because	
	[2]

43. The time taken to complete a journey doubles as the speed halves.

On the axes below, sketch a graph to show this relationship.


44. The graph shows the velocity of a particle over the first 24 minutes of its motion.

Between 11 minutes and 17 minutes the velocity of the particle is v metres per minute. The average velocity of the particle over the 24 minutes is 10.25 metres per minute.

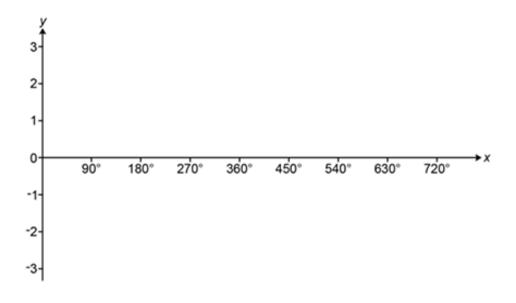
Find the value of *v*. You must show your working.

45. The graphs of x = -3 and y = -x are drawn on the grid.

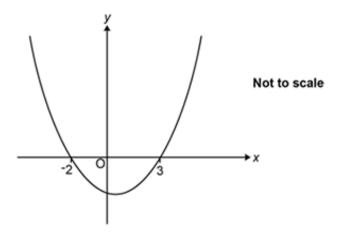
The region ${\bf R}$ satisfies the following inequalities.

$$y-2<\frac{1}{3}x$$

By drawing one more line, find and label the region ${\bf R}$.


46. A rhombus is drawn on a coordinate grid.

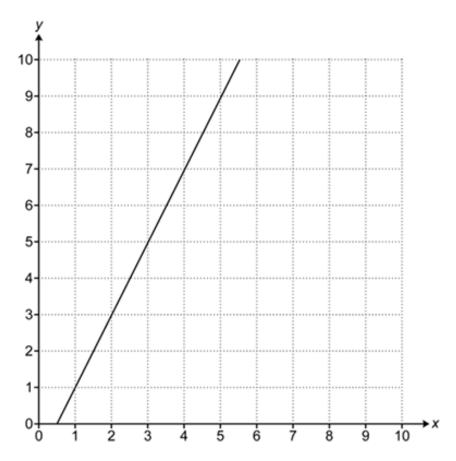
One diagonal of the rhombus has equation $y = \frac{1}{3}x + 4$.


The other diagonal passes through the point (2, 5).

Find the equation of the other diagonal of the rhombus. Give your answer in the form y = mx + c.

47. Sketch the graph of $y = \sin x + 1$ for $0^{\circ} \le x \le 720^{\circ}$.

48(a). Charlie sketches this quadratic graph.


Charlie says

The *y*-intercept is $^-6$.

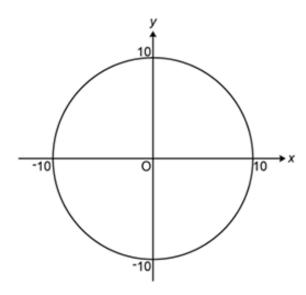
Show that what Charlie says could be correct.

	[3]
(b). Explain why what Charlie says may not be correct.	
	[2]

49. The graph of y = 2x - 1 is drawn on this one centimetre grid.

The region ${\bf R}$ satisfies these inequalities.

$$y \ge 2x - 1$$

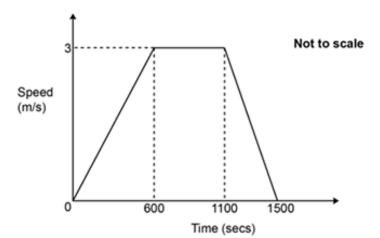

$$y \le 7$$

$$x + y \ge 8$$

Show that the area of region **R** is 3 cm².

[2]

50(a). The graph below shows a circle with centre (0, 0) and equation $x^2 + y^2 = 100$.



Show that the point (8, $\overline{\ }$ 6) lies on the circumference of the circle.

(b). Find the equation of the tangent to the circle at the point (8, -6), giving your answer in the form y = mx + c.

.....[5]

51(a). Harper goes for a training run. The graph shows their speed as they run.

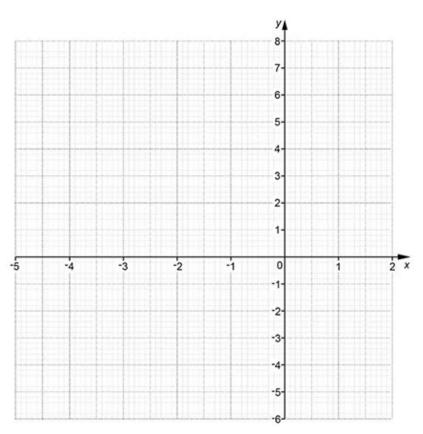
Write down Harper's acceleration between 600 seconds and 1100 seconds.

.....m/s² [1]

(b). Work out Harper's average speed, in m/s, during the 1500 seconds. You must show your working.

..... m/s **[5]**

52. The diagram shows a circle, centre the origin.

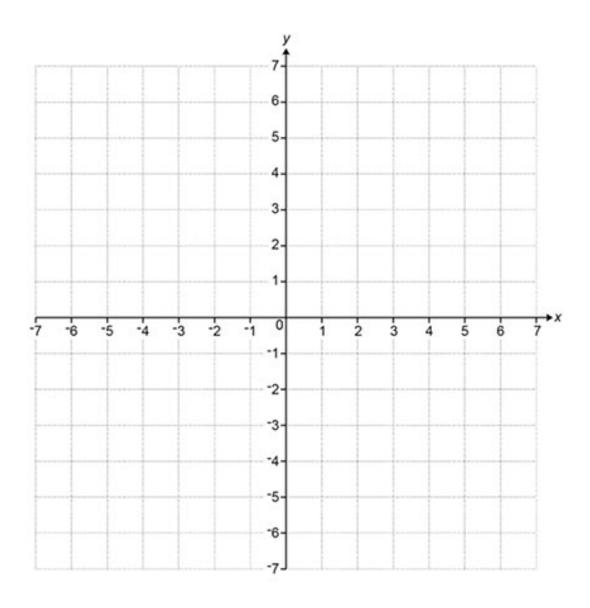

Write down the equation of the circle.

.....[2

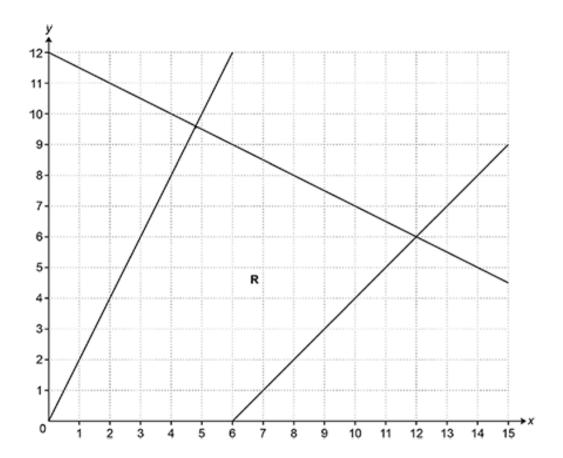
53(a). Here is a table of values for $y = x^2 + 3x - 3$.

х	⁻ 5	⁻ 4	-3	-2	-1	0	1	2
у	7	1	-3	-5	-5	-3	1	7

Draw the graph of $y = x^2 + 3x - 3$ for $-5 \le x \le 2$.


(b). Write down the equation of the line of symmetry of the graph	1.
	[1]
(c). Use the graph to solve the equation $x^2 + 3x - 3 = 0$. Give your answers to 1 decimal place.	
	x = or x =
54. A straight line passes through the point (6, ⁻ 3) and is perpen	dicular to the line $y = 3x + 2$.
Find the equation of the line, giving your answer in the form $y = \frac{1}{2}$	mx + c.
	[4
55. The point $(4, 6\sqrt{3})$ lies on the circumference of a circle, cent	re (0, 0).
Find the equation of the circle.	

56(a). Complete the table for $y = 1 + \frac{6}{x}$


x	-6	-3	-2	-1	1	2	3	6
у	0		-2	-5	7	4	3	2

[1]

(b). Draw the graph of $y = 1 + \frac{6}{x}$ for $^-6 \le x \le 6$, $x \ne 0$.

57(a). The region **R** is shown on this grid.

Region **R** is defined by four inequalities. One of the inequalities is $y \ge 0$.

Use the symbols \leq and \geq to complete the other three inequalities.

(b). The inequality $y \ge 0$ is replaced by a new inequality. Region R is then a trapezium.

The point (6, 0) is still one of the corners of Region **R**.

Write down the new inequality.

.....[3]

58. Find the coordinates of the turning point of the graph of $y = x^2 - 8x + 5$.

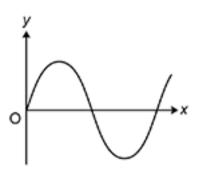
(......) [4]

59(a). For each graph below, select its possible equation from this list.

y = x

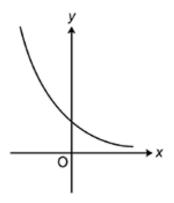
 $y = \sin x$

 $y = 3^x$

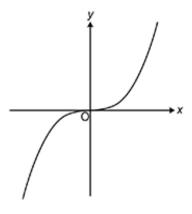

 $y = x^2$

 $y = \cos x$

 $y = \tan x$

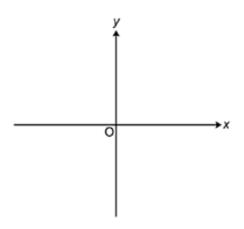

$$y = \left(\frac{1}{3}\right)^x$$

i.

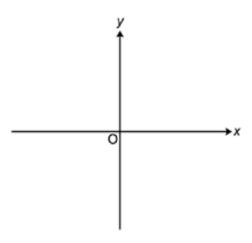


y =[1]

ii.

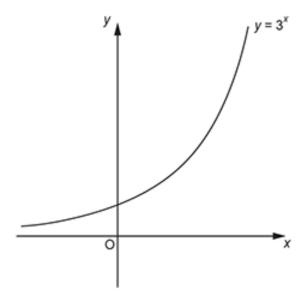


(b). Here is a sketch of $y = x^3$.

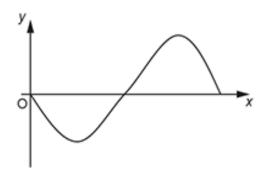


On the axes below, sketch the graphs of

$$y = \frac{1}{2}x^3$$



ii. $y = x^3 + 8$, showing the values of any intercepts with the axes.


[3]

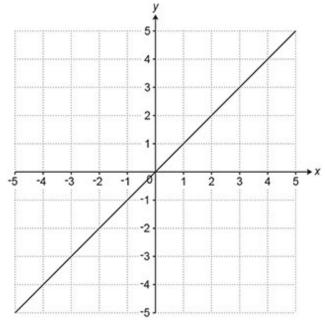
60(a). The graph of $y = 3^x$ is sketched below.

On the same axes, sketch the graph of $y = 2^x$.

(b). Charlie sketches this graph.

Charlie says

The equation of my graph is $y = \sin x$.

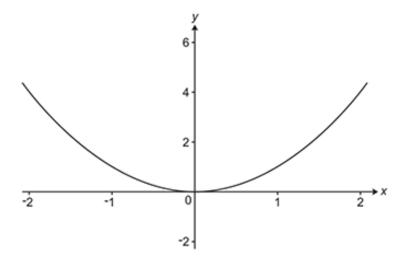

i. Explain how you know that Charlie is **not** correct

______[1]

ii. Write down a possible equation for Charlie's graph.

.....[1]

61. The graph of y = x is drawn on the grid.



The region ${\bf R}$ satisfies the following inequalities.

 $y \ge x$ $y \le 2$ y < -2x - 3

By drawing two more straight lines on the grid, find and label the region **R**.

62(a). The graph of $y = x^2$ is shown below for $-2 \le x \le 2$.

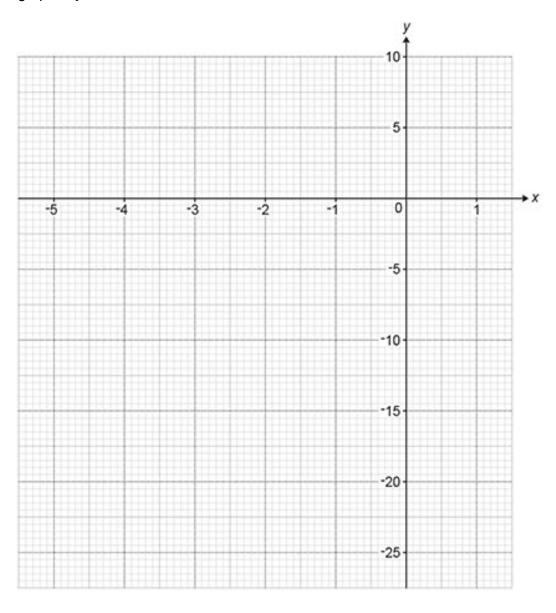
Find the equation of the image when $y = x^2$ is reflected in the line y = 2.

.....[2]

(b). Describe the **single** transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 6x - 5$.

[4]

63. Write down an equation for the line that is parallel to y = 3x - 5 and passes through the point (0, 1).

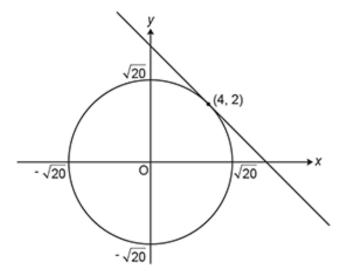

.....[2]

64(a). Complete the table for $y = x^3 + 4x^2$.

Х	⁻ 5	⁻ 4.5	⁻ 4	-3	-2	-1	0	1
У	⁻ 25	⁻ 10.1	0	9	8		0	5

[1]

(b). Draw the graph of $y = x^3 + 4x^2$ for $^-5 \le x \le 1$.


[3]

(c). The equation $x^3 + 4x^2 = k$, where k is an integer, has exactly one solution for $-5 \le x \le 1$.

Find the greatest possible value of k.

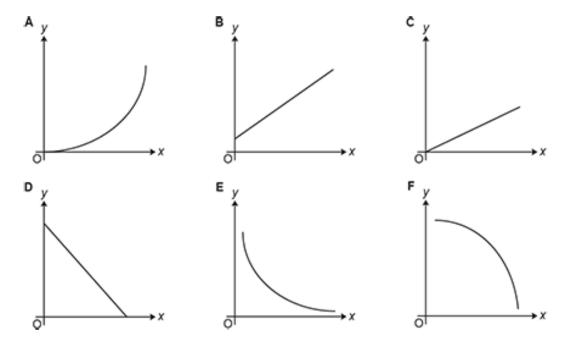
k =[1]

65(a). The diagram shows a circle, centre the origin, with the tangent to the circle at the point (4, 2).

Write down the equation of the circle.

.....[2

(b).


i. Show that the tangent to the circle at the point (4, 2) has gradient $^-2$.

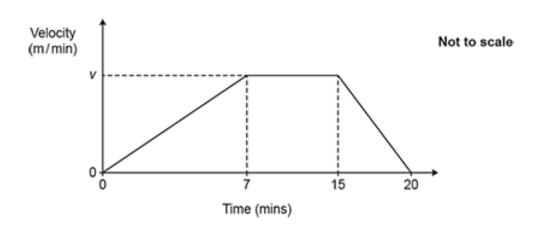
[2]

ii. Find the equation of the tangent to the circle at the point (4, 2).

.....[2]

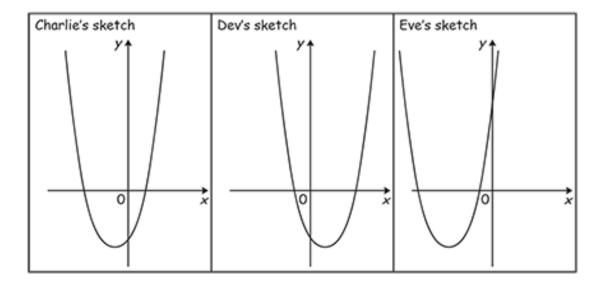
66(a). Here are sketches of six graphs, labelled **A** to **F**.

Write the letter of the graph that represents the following relationships.


y is directly proportional to *x*.

.....[1]

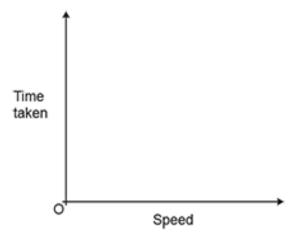
(b). y is inversely proportional to x.


.....[1]

67. The graph shows the velocity of a particle over the first 20 minutes of its motion.

Between 7 minutes and 15 minutes the velocity of the particle is v metres per minute. The average velocity of the particle over the 20 minutes is 11.55 metres per minute.

69. Charlie, Dev and Eve all attempt to sketch the graph of y = (2x - 5)(x + 4).



Whose sketch is the most accurate? Write down the properties of the graph that you used in making your decision.

 [2]

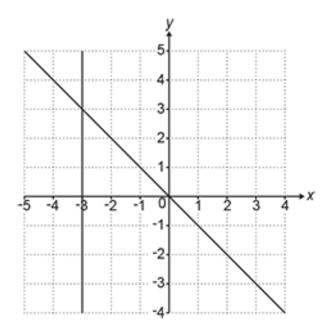
70. The time taken to complete a journey halves as the speed doubles.

On the axes below, sketch a graph to show this relationship.

[2]

71. A rhombus is drawn on a coordinate grid.

One diagonal of the rhombus has equation $y = \frac{1}{2}x + 3$.

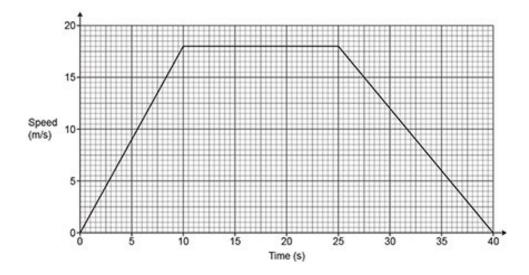

The other diagonal passes through the point (1, 7).

Find the equation of the other diagonal of the rhombus.

Give your answer in the form y = mx + c.

[5]

72. The graphs of x = 3 and y = x are drawn on the grid.

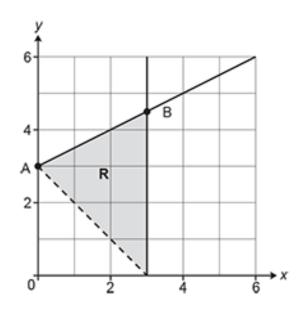


The region **R** satisfies the following inequalities.

$$x \le -3$$
 $y \le -x$ $y-1 > \frac{1}{2}x$

By drawing one more line, find and label the region **R**.

73(a). The graph shows the speed of a car during the first 40 seconds of a journey.


Write down the acceleration of the car between 10 seconds and 25 seconds.

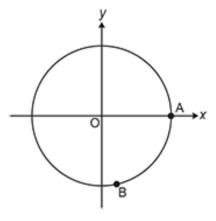
..... m/s² [1]

(b). Work out the average speed of the car, in m/s, during the 40 seconds. You must show your working.

	m/s [5]
--	----------------

74(a). The region \mathbf{R} is shown on this grid. A is the point (0, 3) and B is the point (3, 4.5).

Show that an equation of the straight line through A and B is 2y = x + 6.


(b). Write down the three inequalities that define region R.

.....[5]

75(a). A circle has equation $x^2 + y^2 = 100$.

The sketch shows the circle and two points, A and B, which lie on the circumference of the circle.

Write down the coordinates of point A.

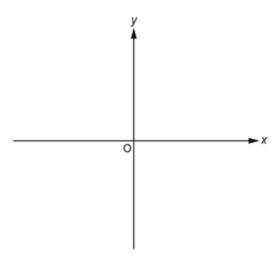
1																		,	١	ı	1	ı	٦
ı		٠						-	,								•		,	ı	ш		

(b). Point B has x-coordinate 3.

Find the exact value of the *y*-coordinate of point B.

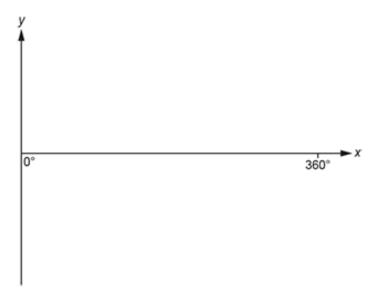
.....[3]

(c). Another point, C, lies on the circle and has a y-coordinate that is seven times its x-coordinate.

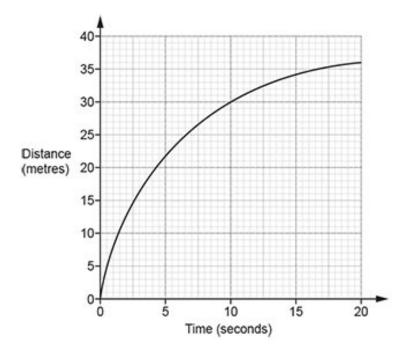

Find the two possible pairs of coordinates for point C.

Give your answers in exact form.

You must show your working.


(......) and (.....) [5]

76(a). Sketch the graph of $y = 5^x$ indicating any values where the graph crosses the axes.


[2]

(b). Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$ indicating any values where the graph crosses the axes.

[2]

77(a). The graph shows the distance travelled by a particle over the first 20 seconds of its motion.

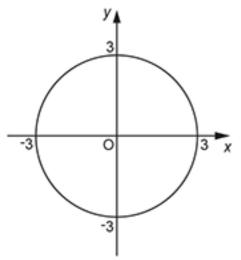
Estimate the speed of the particle at 10 seconds. You must show working to support your estimate.

..... m/s [3]

(b). Show that the average speed of the particle over the first 20 seconds of its motion is 1.8 m/s.

[1]

78. Find the equation of the line through (4, 5) that is perpendicular to y = 2x - 3.

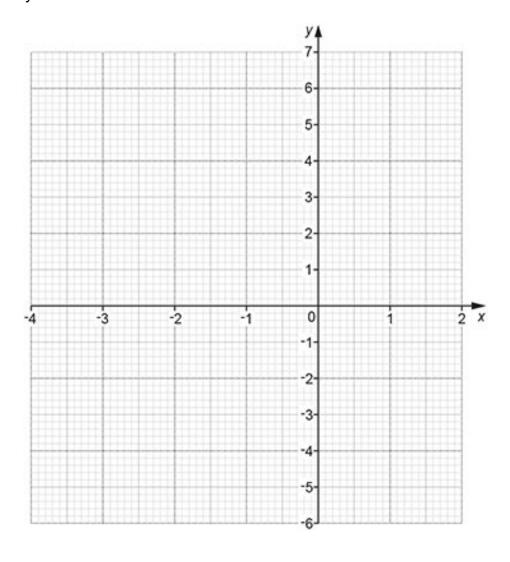

.....[3]

.....[2]

79. Describe the **single** transformation that maps the graph of $y = x^2$ onto the graph of $y = (x + 3)^2 + 5$.

[3]

80. The diagram shows a circle, centre the origin.



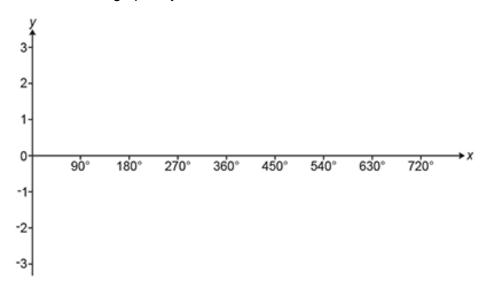
Write down the equation of the circle.

81(a). Here is a table of values for $y = x^2 + 2x - 2$.

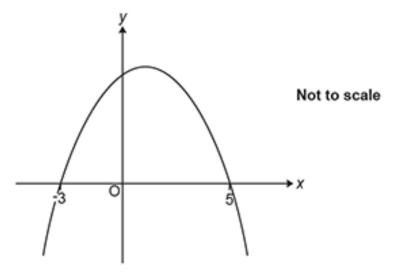
X	⁻ 4	-3	-2	⁻ 1	0	1	2
У	6	1	-2	-3	-2	1	6

Draw the graph of $y = x^2 + 2x - 2$ for $-4 \le x \le 2$.

(b). Write down the equation of the line of symmetry of the graph.


.....[1]

[3]


(c). Use the graph to solve the equation $x^2 + 2x - 2 = 0$. Give your answers to 1 decimal place.

(c) $x = \dots$ or $x = \dots$ [2]

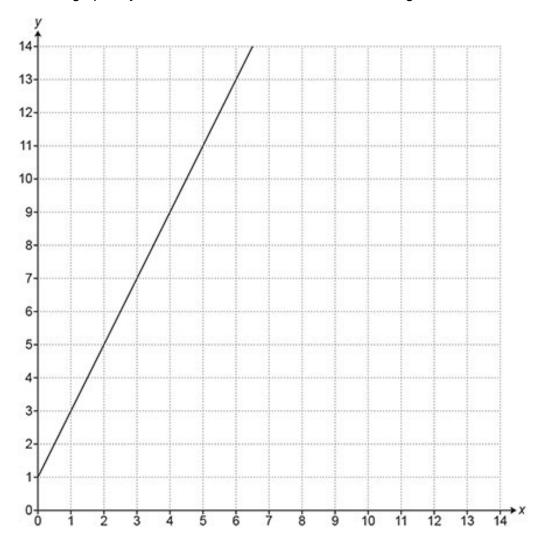
82. Sketch the graph of $y = \cos x - 1$ for $0^{\circ} \le x \le 720^{\circ}$.

83(a). Frankie sketches this quadratic graph.

Frankie says

The *y*-intercept is 15.

Show that what Frankie says could be correct.

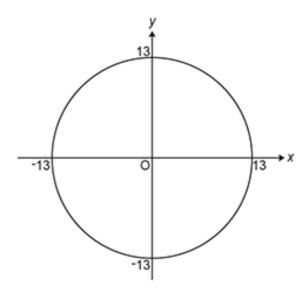

[3]

[3]

(b). Explain why what Frankie says may **not** be correct.

[2]

84. The graph of y = 2x + 1 is drawn on this one centimetre grid.


The region ${\bf R}$ satisfies these inequalities.

$$y \le 2x + 1$$

$$y \ge 5$$

 $x + y \le 13$

Show that the area of region ${f R}$ is 12 cm 2 .

85(a). The graph below shows a circle with centre (0, 0) and equation $x^2 + y^2 = 169$.

Show that the point (-12, 5) lies on the circumference of the circle.

[2]

(b). Find the equation of the tangent to the circle at the point (-12, 5), giving your answer in the form y = mx + c.

86. An athlete goes for a training run.

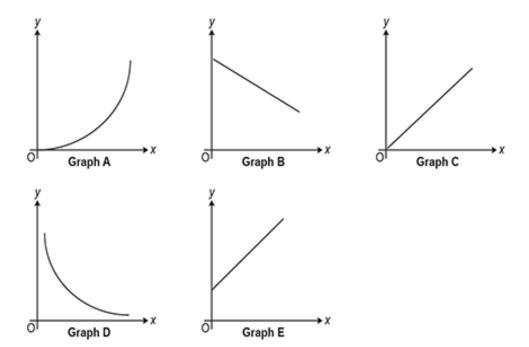
The graph shows their speed as they run.

Write down the athlete's acceleration between 400 seconds and 1000 seconds.

..... m/s² [1]

87. A straight line passes through the point (8, 1) and is perpendicular to the line y = 4x - 2.

Find the equation of the line, giving your answer in the form y = mx + c.


.....[4]

88. The point $(5,7\sqrt{2})$ lies on the circumference of a circle, centre (0,0).

Find the equation of the circle.

.....[4]

89(a). Here are sketches of five graphs.

Write the letter of the graph that represents the following relationships.

y is directly proportional to x.

.....s[1]

(b). y is inversely proportional to x.

.....[1]

90(a). For each graph below, select its possible equation from this list.

$$y = x$$

 $y = \sin x$

$$y = x^2$$

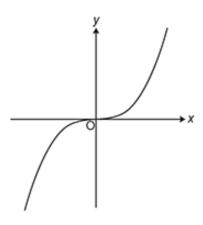
$$y = \sin x$$

$$y = \cos x$$
$$y = \left(\frac{1}{x}\right)^x$$

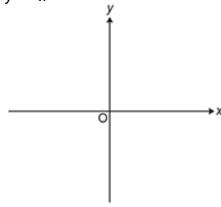
$$y = \frac{1}{x}$$
$$y = \tan x$$

$$y = 3^{x}$$

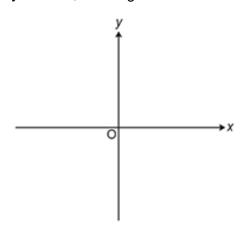
i.


ii.

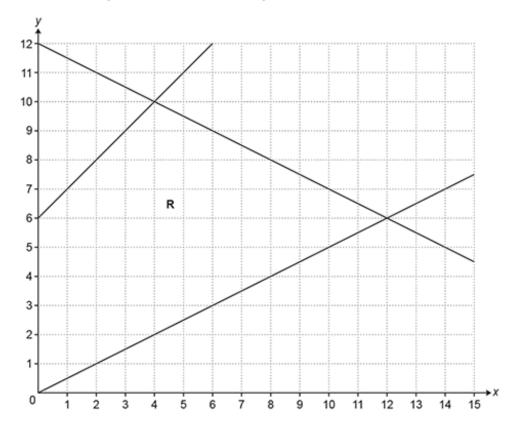
$$y = \left(\frac{1}{3}\right)^3$$


(i) *y* =[1]

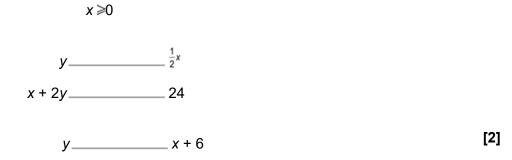
(b). Here is a sketch of $y = x^3$.



On the axes below, sketch the graphs of


i.
$$y = -x^3$$

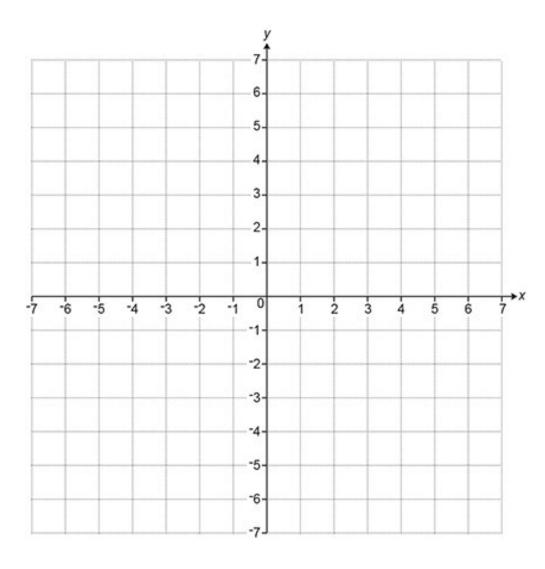
ii. $y = x^3 - 8$, showing the values of any intercepts with the axes.



91(a). The region R is shown on this grid.

Region **R** is defined by four inequalities. One of the inequalities is $x \ge 0$.

Use the symbols ≤and ≥to complete the other three inequalities.


(b). The inequality $x \ge 0$ is replaced by a new inequality. Region **R** is then a kite.

Write down the new inequality.

92(a). Complete the table for $y = \frac{6}{x}$

Х	⁻ 6	-3	⁻ 2	-1	1	2	3	6
у	-1	-2		⁻ 6	6	3	2	1

(b). Draw the graph of $y = \frac{6}{x}$ for $-6 \le x \le 6$, $x \ne 0$.

[1]

93.	Find the	coordinates of	the turnir	na point	of the grap	$h ext{ of } v = x$	$x^2 + 6x + 17$.

(......)[4]

END OF QUESTION PAPER